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1 Introduction

To be considered correct or useful, real-time systems must deliver results within speci�ed
time intervals, either without exception or with high probability. Recently, a large number
of formal methods have been invented for specifying and verifying real-time systems. It has
been suggested (see, e.g., [11]) that these formal methods need to be tested out on actual
real-time systems. Such testing will allow the scalability of the methods to be assessed and
will also uncover new problems requiring formal solution.

However, before these methods can be applied productively to industrial systems, greater
understanding is needed of how they compare|e.g., what classes of problems they are de-
signed to solve, the availability of mechanical support, etc. To provide insight into the utility
of di�erent methods for solving real-time problems, we have developed a generic version of
a real-time railroad crossing system. Our plan is to use this example as a benchmark for
comparing di�erent formalisms. In this paper, we de�ne the problem, describe three classes
of formalisms that can be applied, and summarize e�orts currently in progress to specify the
system of interest and prove properties about its behavior.

2 Generic Railroad Crossing Problem

2.1 Background

The original example, developed by Leveson to illustrate her software safety techniques,
involves a system operating a gate at a railroad crossing [9]. The system must satisfy a
safety property. The purpose of the safety property is to ensure that the system cannot
enter an unsafe state|i.e., a state in which a train is in the crossing but the crossing gate
is not down. In 1988, Jahanian and Stuart published a real-time version of this problem to
demonstrate their method for verifying safety properties about speci�cations in a graphical
language called Modechart [8]. To make the problem somewhat more realistic, we have
generalized it. While the Jahanian-Stuart version describes a system with a single track and
at most two trains in the region of interest both traveling in the same direction, our version
allows several tracks and an unspeci�ed number of trains traveling in both directions. In
addition to the safety property, our version includes a utility property. The purpose of the
utility property is to avoid a degenerate solution, e.g., one that lowers the gate and keeps
it lowered. Safety-critical systems must not only operate safely. To be useful, they must
perform certain functions within speci�ed time intervals. That is, they must exhibit bounded
liveness.



2.2 Problem Statement

The system to be developed operates a gate at a railroad crossing. The railroad crossing I

lies in a region of interest R, i.e., I � R. A set of trains travel through R on multiple tracks
in both directions. A sensor system determines when each train enters and exits region R.
To describe the system formally, we de�ne a gate function g(t) 2 [0; 90], where g(t) = 0
means the gate is down and g(t) = 90 means the gate is up. We also de�ne a set f�ig of
occupancy intervals, where each occupancy interval is a time interval during which one or
more trains are in I . The ith occupancy interval is represented as �i = [�i; �i], where �i is
the time of the ith entry of a train into the crossing when no other train is in the crossing
and �i is the �rst time since �i that no train is in the crossing (i.e., the train that entered at
�i has exited as have any trains that entered the crossing after �i).

Given two constants �1 and �2, �1 > 0; �2 > 0; the problem is to develop a system to operate
the crossing gate that satis�es the following two properties:

Safety Property t 2 [i�i ) g(t) = 0 (The gate is down during
all occupancy intervals)

Utility Property t 62 [i[�i � �1; �i + �2]) g(t) = 90 (The gate is up as often
as possible)

3 Formal Approaches

Several formalisms are available to specify the system described above and to reason about
its properties. These formalisms fall into three classes:

� General-Purpose Theorem Provers (e.g., Boyer-Moore [1], EVES [10], EHDM
[12], PVS [13], HOL [7]),

� Model Checkers (e.g., Clarke's CTL [2], the Modechart veri�er [14]), and

� Process Algebras (e.g., CSR [6], Cleaveland's Concurrency Workbench [3], and CSP
[5]).

We note that veri�cation tools based on the two latter approaches, model checking and
process algebras, are highly specialized and provides veri�cation with little human interven-
tion. In contrast, a proof generated with a general-purpose theorem prover usually requires
considerable human guidance.

E�orts are currently in progress to apply one or more examples of each class to the railroad
crossing problem. ORA Canada has developed a solution and completed proofs of both the
safety and utility properties using their general-purpose theorem prover, EVES. SRI has
developed a proof of the safety property and is working on a proof of the utility property
using their newly developed theorem prover, PVS. Solutions using CSP and an approach
based on Modechart speci�cations are in progress at NRL. Bill Roscoe of Oxford developed
the original CSP speci�cation of the problem and is part of a team that built a tool named
FDR (Failure Divergence Re�nement) [5] to automatically check that CSP speci�cations
satisfy certain properties. To develop insight into the styles of speci�cation and veri�cation
that are most natural for a given formalism, the preceding e�orts are, to the extent feasible,
proceeding independently.
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4 Summary

Once the speci�cations and proofs are complete, several criteria can be applied to compare
the formalisms [4]. Among these criteria are

� How easy is it to reason about time using the formalism? How understandable are
speci�cations and proofs in the formalism?

� For what classes of timing properties is the formalism suitable?

� What is the quality of the mechanical tools available to support the formalism?

� Is the formal method better suited to some application domains than to others?

� How general is the formalism? Is it designed to specify and verify only timing proper-
ties? What other properties can be speci�ed and veri�ed using the formalism?

� Is the formalism more suited to a particular phase of software development than to
others, e.g., requirements rather than detailed design?

� Does the formalism handle continuous as well as discrete time?

Addressing these issues should help determine what each formalism's strengths are and how
the formalism can be used productively to develop industrial-strength real-time systems.
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